抽象的な
Pharmacokinetics and tissue distribution of microspheres prepared by spray drying technique: targeted drug delivery
Sree Harsha, Bandar E. Al-dhubiab, Anroop B. Nair, Mahesh Attimarad, Katharigatta N. Venugopala, Kedarnath SA
Conventional dosage form after administration, the anti-asthma medication travels freely and distribute equally in highly perfused tissues leading to undesirable side effects. It makes the treatment ineffective and required concentration of drug could not reach the lungs. Microspheres as targeted drug delivery system have emerged as a remedial measure and to achieve higher salbutamol concentration in capillary network of lungs. As an application, salbutamol-loaded albumin microspheres (SAM) were prepared using Buchi B-90 nano spray-drier. Central composite design (CCD) was applied to optimize the spray drying process. The optimized SAM was subjected to surface morphology and found to be shriveled particle. The mean particle size was 8.24 μm, an ideal size to deposit in the capillary bed of the lungs. The maximum drug encapsulation and percentage yield were 72 ± 0.8% and 86 ± 0.4%, respectively. The drug release showed sustained release and was best explained by Korsmeyer peppas equation and showed the highest linearity (R2-0.9915). In vivo results shows sustained release and targeting efficacy of SAM and the concentration of drug in the lung was higher (1311.1 ± 8.12 μg/g, 15 min) in comparison to conventional formulation (90.2 ± 0.76 μg/g, 10 min). The product were stable and no change was observed under (5 ± 2°C) and (25 ± 2°C). Results prove that the microspheres may be an alternative drug delivery to lungs.